Automated Event Service (AES): Efficient and Flexible Searching for Earth Science Phenomena PI: Tom Clune, NASA GSFC ### **Objective** Develop an Automated Event Service system that: - Methodically mines custom-defined events (e.g., tornadoes) in the reanalysis data sets of global atmospheric models. - Enables researchers to specify their custom, numeric event criteria using a user-friendly web interface to search the reanalysis data sets. - Supports Event Specification Language (ESL) for more flexibility and versatility. - Contains a social component that enables the dynamic formation of collaboration groups for researchers to cooperate on event definitions of common interest. - Provides rapid results via high performance computing and advanced search technologies. #### **Automated Event Services** Utilize Big-Data Identify occurrences collaboration (events) of phenomena technologies to... Entities in the 4D Enable interactive and collaborative spatiotemporal space scientific data analysis on big data 9 Associate additional Share data and analysis methods interactive data and visual analytics with defining features ...in order to... extracted from data. Relieve scientists from data 4 Correlate defining features Big-Data technologies (SCIDB. POLARIS, HADOOP) management. of various phenomena in both space and time. Empower scientists to focus 5 Improve predictions of on science, and future events using correla Boost science productivity tions among phenomena for better decision making Big-Data Technology Science Vision Infrastructure Enablement ### **Approach** - Leverage advances in high-end computing and search technologies to create an efficient mechanism for searching reanalysis data for events. - Build baseline system by custom integration of mature components: HPC cluster, MapReduce, Hadoop/Hbase. - Develop ESL via analysis of representative events. - Adapt advanced tree-based indexing strategies to efficiently support parameter-based event queries. - Apply agile methodology: develop in small increments driven by use cases and synthetic tests. **Co-Is/Partners:** Kwo-Sen Kuo, Caelum Research; Rahul Ramachandran, NASA MSFC ## Key Milestones | Import reanalysis data | 10/12 | |--|-------| | Implement native indexing | 02/13 | | Complete event web service | 05/13 | | Complete basic web portal | 11/13 | | Complete distributed event database | 02/14 | | Design review for ESL | 05/14 | | Demonstrate Blizzard use case on 30-node | | | commercial cloud cluster | 07/14 | | Complete multifaceted web portal | 11/14 | | Complete tree-index search capability | 03/15 | | Complete delivery of ESL | 03/15 | | Testing and validation | 05/15 | | | | TRL_{in} = 2 TRL_{current} = 2